

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1707–1709

Stereoselective synthesis of belactosin C and its derivatives using a catalytic proline catalyzed crossed-aldol reaction \dot{A}

G. Kumaraswamy* and B. Markondaiah

Organic Division III, Fine Chemicals Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 29 November 2006; revised 21 December 2006; accepted 10 January 2007 Available online 14 January 2007

Abstract—A highly practical and concise stereoselective total synthesis of belactosin C and synthetic variants was achieved using an S-proline catalyzed crossed-aldol reaction as the key step. $© 2007 Elsevier Ltd. All rights reserved.$

Many natural products possessing the 2-oxetanone (b-lactone) moiety exhibit biological activity such as anti-biotic, antitumour and antiobesity.^{[1](#page-2-0)} Prominent natural molecules bearing a 2-oxetanone ring include anisatin, a potent vegetal poison and the antibiotic $1233A² A sig 1233A² A sig 1233A² A sig$ nificant number of natural 2-oxetanones with interesting biological activity have been identified and synthesized.^{[3](#page-2-0)} Recent additions to this family are belactosins A and C (Fig. 1) which inhibit the 20s proteasome in vitro $(IC_{50} = 0.4 \mu M,$ chymotrypsin-like activity) in a yeast based assay of Streptomycin metabolites.[4](#page-2-0)

The basic structure of the belactosins consists of a *trans*b-lactone moiety attached to an ornithine–alanine amino acid dipeptide unit. Degradation studies suggested that the β -lactone moiety is responsible for the antiproliferative activity. Two total syntheses of belactosins A and C and their analogues have been previously reported.[5](#page-2-0) Recently, we developed a stereocontrolled route to belactosin C via an Oppolzer aldol reaction as the key step using a sultam chiral auxiliary.^{[6](#page-2-0)} Despite these synthetic methods, there is still a need for an alternative efficient synthetic route for belactosin C and new derivatives in order to further investigate β -lactones and their efficacy towards cancer and other diseases (Fig. 1). We envisioned that belactosin C could be read-

ily accessed by an S-proline catalyzed crossed-aldol reaction to install the two stereocentres of the trans-blactone in a highly diastereo and enantioselective manner.[7](#page-2-0) The retrosynthetic approach to belactosin C and derivatives are shown in [Scheme 1](#page-1-0).

In this Letter we report a concise and a highly stereoselective synthetic route to belactosin C wherein the chirality is derived from catalytic S-proline. Our synthesis began with a 10 mol % S-proline catalyzed crossed-aldol reaction between 3-(S)-methylvaleraldehyde 6a, derived from L -isoleucine [8](#page-2-0) and glyceraldehyde acetonide 7 ,⁸ which in turn was prepared from D-mannitol. After initial trials, the reaction was carried out with 10 mol % of S-proline and 1 equiv of 6a and 2 equiv of 7 in dry DMF at 4° C, stirring for 48 h led to aldol product 5a. Due to the capricious nature of $5a$,^{[9](#page-2-0)} it was subjected to oxidation using sodium chlorite and sodium dihydrogen orthophosphate. The resulting β -hydroxy acid was lactonized with bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOPCl) to give β -lactone acetonide 4a in 46% overall yield from 6a.

Keywords: S-Proline; Belactosin C; b-Lactone; Ornithine–alanine; Proliferative activity.

 $*$ IICT Communication No. 061225.

^{*} Corresponding author. Tel.: $+91$ 40 27193275; fax: $+91$ 40 27160387; e-mail addresses: [gkswamy@iictnet.org;](mailto:gkswamy@iictnet.org) [gkswamy_iict@](mailto:gkswamy_iict@ yahoo.co.in) [yahoo.co.in](mailto:gkswamy_iict@ yahoo.co.in)

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.059

Scheme 1.

Scheme 2. Reagents and conditions: (i) NaNO₂, HBr, 0 °C–rt, 12 h; Zn, H₂SO₄, 0 °C–rt, 12 h (65% yield); (ii) dry MeOH, H₂SO₄, reflux, 12 h (70%) yield); (iii) LiAlH₄, Et₂O, rt, 3 h; (iv) PCC, DCM, rt, 1 h (59% yield over two steps); (v) 7, S-proline (10 mol %), DMF, addition of 6a via syringe pump over 24 h; then 48 h, 4 °C; (vi) NaClO₂, 20% NaH₂PO₄·2H₂O, t-BuOH, 0 °C-rt, 4 h; (vii) BOPCl, Et₃N, DCM, 23 °C, 1 h (46% overall yield from 6a); (viii) 1 N HCl:THF (1:1) 0 °C-rt, 3 h (95% yield); (ix) NaIO₄, 1,4-dioxane:H₂O (1:2), 20 °C, 3 h; (x) NaClO₂, 20% NaH₂PO₄:2H₂O, t-BuOH, 0° C–rt, 4 h (83% yield over two steps); and (xi) 2, DCC, HOBt, EtOAc:H₂O (1:1) rt, 1 h (50% yield).

b-Lactone acetonide 4a was subjected to hydrolysis with 1 N HCl:THF (1:1) at 0° C to rt, for 4 h to give β -lactone diol 11a in 95% yield. Diol 11a was subjected to oxidative cleavage using sodium metaperiodate in 1,4 dioxane: H_2O (1:2) to give a crude aldehyde which was further oxidized with chlorite/dihydrogen orthophosphate to afford β -lactone carboxylic acid 3a in an 83% yield over the two steps.¹⁰ β -Lactone carboxylic acid 3a was coupled with dipeptide $2¹¹$ $2¹¹$ $2¹¹$ which resulted cleanly in fully protected belactosin C 1a in an 18% overall yield from aldol 5a, (Scheme 2).

Belactosin C derivative 1b was synthesized using valeraldehyde 6b $(R = H)$ and glyceraldehyde acetonide 7 followed by the same sequence of steps as used in Scheme 2 in an overall yield of 20%. In the same way, diastereomer $1c^{12}$ $1c^{12}$ $1c^{12}$ was prepared using R-proline instead of S-proline in an overall yield of 19%. The analytical data of 1a and 1b were in full agreement with the reported data.^{[6](#page-2-0)}

In conclusion, we have developed a catalytic route for the total synthesis of belactosin C and derivatives. Significantly, the chirality of the β -lactone moiety was installed with inexpensive reagents. Application of this novel methodology to synthesize various substituted blactones in order to study their activity profiles is under progress.

Acknowledgements

We are grateful to Dr. J. S. Yadav, Director, IICT, for his constant encouragement. Financial assistance from DST, New Delhi (Grant No. SR/SI/OC-39/2002) is gratefully acknowledged. Thanks are also due to Dr. T. K. Chakraborthy for his support. B.M. is thankful to the UGC (New Delhi) for awarding the fellowship.

Supplementary data

Experimental procedures, spectral data and copies of spectra for compounds 1c, 3c and $4a-c$ can be found in the Supplementary data. Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2007.01.059.](http://dx.doi.org/10.1016/j.tetlet.2007.01.059)

References and notes

- 1. Wang, Y.; Tennyson, R. L.; Romo, D. Heterocycles 2004, 64, 605–658.
- 2. Pommier, A.; Pons, J. M. Synthesis 1995, 729–744.
- 3. (a) Paterson, I.; Hulme, A. N. J. Org. Chem. 1995, 60, 3288–3300; (b) Mandal, A. K. Org. Lett. 2002, 4, 2043– 2045; (c) Wu, Y.; Sun, Y. P. J. Org. Chem. 2006, 71, 5748– 5751; (d) Hanessian, S.; Tehim, A.; Chen, P. J. Org. Chem. 1993, 58, 7768–7781; (e) Yadav, J. S.; Vishweshwar Rao, K.; Sridhar Reddy, M.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4393–4395.
- 4. Asai, A.; Hasegawa, A.; Ochiai, K.; Yamashita, Y.; Mizukami, T. J. Antibiot. 2000, 53, 81–83.
- 5. (a) Armstrong, A.; Scutt, J. N. Chem. Commun. 2004, 510– 511; (b) Larionov, O. V.; de Meijere, A. Org. Lett. 2004, 6, 2153–2156.
- 6. Kumaraswamy, G.; Padmaja, M.; Markondaiah, B.; Nivedita, J.; Sridhar, B.; Uday kiran, M. J. Org. Chem. 2006, 71, 337–340.
- 7. (a) Pihko, P. M.; Erkkila, A. Tetrahedron Lett. 2003, 44, 7607–7609; (b) Storer, I. R.; MacMillan, D. W. C. Tetrahedron 2004, 60, 7705–7714; (c) Northup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798– 6799; (d) Zhao, G. L.; Liao, W. W.; Cordova, A. Tetrahedron Lett. 2006, 47, 4929–4932.
- 8. Aldehydes containing an α -methine carbon (CHR₃) adjacent to the carbonyl do not under go homo-dimerization when exposed to the catalyst as the kinetic inaccessibility of the a-methine proton and thermodynamic instability of the corresponding enamine effectively prohibit nucleophile formation.
- 9. β-Hydroxyaldehydes such as $5a$ were reported to undergo oligomerization, elimination and other decomposition reactions. For recent documented examples, see: (a) Chemler, S. R.; Roush, W. R. J. Org. Chem. 2003, 68, 1319–1333; (b) Lautens, M.; Stammers, T. A. Synthesis 2002, 1933–2012.
- 10. (a) Efforts to estimate the level of diastereoselectivity of 5a were not successful. Presumably, the minor diaste-

reomer formed during the S-proline catalyzed aldol reaction was removed in the subsequent purification of 4a; (b) The diastereo and enantioselectivity of aldol product $5a$ was determined on the basis of β -lactone carboxylic acids 3a and 3b reported in our previous work.⁶ The optical rotation of compound 3c, was similar in magnitude but opposite in sign to that of 3b $([\alpha]_{\text{D}}^{25}$ +13.8 (c 0.05, CHCl₃); lit.⁶ $([\alpha]_{\text{D}}^{25}$ -10.5 (c 1, $CHCl₃$).

- 11. For the preparation of dipeptide unit 2, see Ref. 6.
- 12. Selected data: Compound 1c: $[\alpha]_{D}^{25}$ -11.5 (c 0.0125, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ : 7.27-7.30 (m, 10H), 5.67 (d, $J = 8.0$ Hz, NH), 5.12 (d, $J = 8.0$ Hz, 2H), 5.03 (s, 2H), 4.50–4.60 (m, 1H), 4.43–4.49 (m, 1H), 4.42 (d, $J = 4.4$ Hz, 1H), 3.40–3.50 (m, 1H), 3.20–3.29 (m, 1H), 2.95–3.08 (m, 1H), 1.66–1.82 (m, 4H), 1.36–1.41 (m, 4H), 1.35 (d, $J = 6.8$ Hz, 3H), 0.94 (t, $J = 7.3$ Hz, 3H); ¹³C NMR (75 MHz) δ : 172.3, 171.5, 169.5, 167.9, 156.0, 136.1, 135.0, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 72.8, 67.3, 67.0, 57.4, 51.7, 51.1, 38.4, 29.9, 29.1, 25.1, 19.8, 18.3, 13.4; IR (KBr): 3316, 2933, 1825, 1731, 1652, 1534, 1447, 1238, 1178, 1072, 905, 738, 661. MS (LC): m/z 590 $[M+Na]^+$. Compound 4a: $[\alpha]_D^{25}$ -28.6 (c 0.025, CHCl₃); ¹H NMP (300 MHz, CDCl) λ : 4.23 (ddd, $I = 2.2$, 6.8) ¹H NMR (300 MHz, CDCl₃) δ : 4.23 (ddd, J = 2.2, 6.8, 9.0 Hz, 1H), 4.19 (dd, $J = 2.2$, 3.7 Hz, 1H), 4.08 (dd, $J = 6.8$, 8.3 Hz, 1H), 3.87 (dd, $J = 6.8$, 8.3 Hz, 1H), 3.49 (dd, $J = 3.7$, 8.3 Hz, 1H), 1.85–1.95 (m, 1H), 1.58–1.70 (m, 1H), 1.41 (s, 3H), 1.37 (s, 3H), 1.23–1.33 (m, 1H), 1.00 (d, $J = 6.8$ Hz, 3H), 0.95 (t, $J = 7.5$ Hz, 3H); ¹³C NMR (75 MHz): δ 170.0, 110.2, 74.8, 73.0, 65.0, 57.9, 33.3, 26.7, 25.7, 25.4, 16.5, 10.9; IR (KBr): 2962, 2875, 1828, 1460, 1378, 1214, 1114, 1066, 895; MS (LC): m/z 251 $[M+Na]^+$. Compound 11a: $[\alpha]_D^{25}$ -38.5 (c 0.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ : 4.33 (dd, $J = 3.\overline{9}$, 8.1 Hz, 1H), 3.68–3.80 (m, 3H), 3.53 (dd, $J = 4.3$, 8.3 Hz, 1H), 2.94 (br s, 1H), 2.30 (br s, 1H), 1.89–1.99 (m, 1H), 1.60–1.70 (m, 1H), 1.20–1.33 (m, 1H), 1.05 (d, $J = 6.6$ Hz, 3H), 0.96 (t, $J = 7.4$ Hz, 3H); IR (KBr): 3382, 2963, 1813, 1459, 1293, 1114, 1014, 877. MS (LC): m/z 211 [M+Na]⁺.