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Stereoselective synthesis of belactosin C and its derivatives using
a catalytic proline catalyzed crossed-aldol reactionI

G. Kumaraswamy* and B. Markondaiah

Organic Division III, Fine Chemicals Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 29 November 2006; revised 21 December 2006; accepted 10 January 2007
Available online 14 January 2007
Abstract—A highly practical and concise stereoselective total synthesis of belactosin C and synthetic variants was achieved using an
S-proline catalyzed crossed-aldol reaction as the key step.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1.
Many natural products possessing the 2-oxetanone
(b-lactone) moiety exhibit biological activity such as anti-
biotic, antitumour and antiobesity.1 Prominent natural
molecules bearing a 2-oxetanone ring include anisatin,
a potent vegetal poison and the antibiotic 1233A.2 A sig-
nificant number of natural 2-oxetanones with interesting
biological activity have been identified and synthesized.3

Recent additions to this family are belactosins A and C
(Fig. 1) which inhibit the 20s proteasome in vitro
(IC50 = 0.4 lM, chymotrypsin-like activity) in a yeast
based assay of Streptomycin metabolites.4

The basic structure of the belactosins consists of a trans-
b-lactone moiety attached to an ornithine–alanine ami-
no acid dipeptide unit. Degradation studies suggested
that the b-lactone moiety is responsible for the antipro-
liferative activity. Two total syntheses of belactosins A
and C and their analogues have been previously re-
ported.5 Recently, we developed a stereocontrolled route
to belactosin C via an Oppolzer aldol reaction as the key
step using a sultam chiral auxiliary.6 Despite these
synthetic methods, there is still a need for an alternative
efficient synthetic route for belactosin C and new
derivatives in order to further investigate b-lactones
and their efficacy towards cancer and other diseases
(Fig. 1). We envisioned that belactosin C could be read-
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ily accessed by an S-proline catalyzed crossed-aldol
reaction to install the two stereocentres of the trans-b-
lactone in a highly diastereo and enantioselective
manner.7 The retrosynthetic approach to belactosin C
and derivatives are shown in Scheme 1.

In this Letter we report a concise and a highly stereo-
selective synthetic route to belactosin C wherein the chiral-
ity is derived from catalytic S-proline. Our synthesis
began with a 10 mol % S-proline catalyzed crossed-aldol
reaction between 3-(S)-methylvaleraldehyde 6a, derived
from LL-isoleucine 8 and glyceraldehyde acetonide 7,8

which in turn was prepared from DD-mannitol. After ini-
tial trials, the reaction was carried out with 10 mol % of
S-proline and 1 equiv of 6a and 2 equiv of 7 in dry DMF
at 4 �C, stirring for 48 h led to aldol product 5a. Due to
the capricious nature of 5a,9 it was subjected to oxida-
tion using sodium chlorite and sodium dihydrogen
orthophosphate. The resulting b-hydroxy acid was
lactonized with bis(2-oxo-3-oxazolidinyl)phosphinic
chloride (BOPCl) to give b-lactone acetonide 4a in
46% overall yield from 6a.
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Scheme 2. Reagents and conditions: (i) NaNO2, HBr, 0 �C–rt, 12 h; Zn, H2SO4, 0 �C–rt, 12 h (65% yield); (ii) dry MeOH, H2SO4, reflux, 12 h (70%
yield); (iii) LiAlH4, Et2O, rt, 3 h; (iv) PCC, DCM, rt, 1 h (59% yield over two steps); (v) 7, S-proline (10 mol %), DMF, addition of 6a via syringe
pump over 24 h; then 48 h, 4 �C; (vi) NaClO2, 20% NaH2PO4Æ2H2O, t-BuOH, 0 �C–rt, 4 h; (vii) BOPCl, Et3N, DCM, 23 �C, 1 h (46% overall yield
from 6a); (viii) 1 N HCl:THF (1:1) 0 �C–rt, 3 h (95% yield); (ix) NaIO4, 1,4-dioxane:H2O (1:2), 20 �C, 3 h; (x) NaClO2, 20% NaH2PO4Æ2H2O,
t-BuOH, 0 �C–rt, 4 h (83% yield over two steps); and (xi) 2, DCC, HOBt, EtOAc:H2O (1:1) rt, 1 h (50% yield).
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b-Lactone acetonide 4a was subjected to hydrolysis with
1 N HCl:THF (1:1) at 0 �C to rt, for 4 h to give b-lac-
tone diol 11a in 95% yield. Diol 11a was subjected to
oxidative cleavage using sodium metaperiodate in 1,4-
dioxane:H2O (1:2) to give a crude aldehyde which was
further oxidized with chlorite/dihydrogen orthophos-
phate to afford b-lactone carboxylic acid 3a in an 83%
yield over the two steps.10 b-Lactone carboxylic acid
3a was coupled with dipeptide 211 which resulted cleanly
in fully protected belactosin C 1a in an 18% overall yield
from aldol 5a, (Scheme 2).

Belactosin C derivative 1b was synthesized using valeral-
dehyde 6b (R = H) and glyceraldehyde acetonide 7
followed by the same sequence of steps as used in
Scheme 2 in an overall yield of 20%. In the same way,
diastereomer 1c12 was prepared using R-proline instead
of S-proline in an overall yield of 19%. The analytical
data of 1a and 1b were in full agreement with the
reported data.6

In conclusion, we have developed a catalytic route for
the total synthesis of belactosin C and derivatives.
Significantly, the chirality of the b-lactone moiety was
installed with inexpensive reagents. Application of this
novel methodology to synthesize various substituted b-
lactones in order to study their activity profiles is
under progress.
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